Columbia Science Review
  • Home
  • About
    • Executive Board
    • Editorial Board
  • Blog
  • Events
    • 2022-2023
    • 2021-2022
    • 2020-2021
    • 2019-2020
    • 2018-2019
    • 2017-2018
    • 2016-2017
  • Publications
  • COVID-19 Public Hub
    • Interviews >
      • Biology of COVID-19
      • Public Health
      • Technology & Data
    • Frontline Stories >
      • Healthcare Workers
      • Global Health
      • Volunteer Efforts
    • Resources & Links >
      • FAQ's
      • Resource Hubs
      • Student Opportunities
      • Podcasts & Graphics
      • Mental Health Resources
      • Twitter Feeds
      • BLM Resources
    • Columbia Events >
      • Campus Events
      • CUMC COVID-19 Symposium
      • CSR Events
    • Our Team
  • Contact

An Incomplete Inheritance: New Research Demonstrates That Histone Proteins Can Carry Genetic Information

4/11/2015

0 Comments

 
Picture
By Tiago Palmisano
Edited By Bryce Harlan

In the modern scientific community, it is common knowledge that deoxyribonucleic acid (DNA) carries our genetic information. Every organism reads its DNA like a set of intricate instructions and pass on some of these instructions to its children through a process known as inheritance. DNA is our biological code. Yet, the link between inheritance and DNA was not discovered until 1952 when Alfred Hershey and Martha Chase, two brilliant molecular biologists, performed a landmark research study.

Before the Hershey-Chase Experiment, there was a debate about whether DNA or proteins carried our genetic information. In fact, most scientists thought that proteins were the stronger candidates at the time. While DNA consists of a fixed sugar-phosphate backbone and only four nucleotide bases abbreviated A, T, G and C, proteins consist of twenty different amino acid combinations, such as lysine or tyrosine. It made much more sense for our biological code to be made of twenty pieces rather than four, for the same reason that it’s easier to make more words with an alphabet of twenty different letters, as opposed to only using A, B, C and D. But after Hershey and Chase and decades of further research, it was accepted that DNA, not protein, was the only carrier of genetic information. However, a recent study may prove this 60-year-old assumption to be incomplete.

Scientists at the University of Edinburgh have found that some biological information can be passed on across subsequent cell generations, regardless of DNA sequence. The paper was published in Scienceon April 3rd, and studies the role of histone proteins. The DNA within our cells is so long that it requires extensive folding, and specific proteins known as histones assist in the folding process. A group of eight histone proteins form a structure called a nucleosome, which the DNA strand wraps itself around. Covalent modification of histone molecules can affect the transcription of the associated DNA. In other words, certain chemicals can be added or subtracted from the histones, and this can have a significant effect on the cell’s ability to read and use the DNA.

Although our understanding of histone modifications is not new, the University of Edinburgh study demonstrates that these modifications can be passed on, regardless of DNA sequence. The study focuses on the histones in a strain of yeast that controls its DNA similarly to human cells. The researchers introduced a chemical change known as methylation into a histone protein in the yeast, specifically H3K9me, mimicking the chemical modifications that occur naturally. The histone methylation successfully affected the yeast’s transcription of the DNA, making the organism unable to read and use certain parts of the biological code. More importantly, this introduced methylation was passed on to the next generation of yeast cells, demonstrating that DNA-independent histone modifications can be inherited.

This new data forces us to reconsider the definition of genetic information. Histone modifications affect how the DNA is used within the cell, and therefore affect the characteristics of the organism. In this way, some of our characteristics may be partially controlled through protein modifications, instead of exclusively by the direct DNA sequence. In a way, the histones carry genetic information, since they can pass on instructions for how our DNA is used. This study shows us that proteins and DNA can influence inherited traits independently.

Such a discovery possesses crucial information that can provide scientists with a more thorough understanding of gene expression in humans. Normally, influencing the traits that a mother or father would pass on to a child would require directly changing the DNA sequence. But the ability to modify histones instead would give doctors a potentially easier option for treating genetic diseases. This discovery could provide new insights in the field of genetic engineering, and lead to cheaper and more efficient research techniques.
​
Regardless of its practical consequences, such a significant clarification in our understanding of the complex process of DNA transcription and inheritance is of monumental importance. Furthermore, it reminds us to question every assumption, especially in science.
0 Comments



Leave a Reply.

    Categories

    All
    Artificial Intelligence
    Halloween 2022

    Archives

    November 2022
    October 2022
    June 2022
    January 2022
    May 2021
    April 2021
    March 2021
    February 2021
    January 2021
    December 2020
    November 2020
    October 2020
    September 2020
    August 2020
    July 2020
    June 2020
    May 2020
    April 2020
    March 2020
    February 2020
    January 2020
    November 2019
    October 2019
    April 2019
    March 2019
    February 2019
    January 2019
    December 2018
    November 2018
    October 2018
    April 2018
    March 2018
    February 2018
    November 2017
    October 2017
    May 2017
    April 2017
    April 2016
    March 2016
    February 2016
    December 2015
    November 2015
    October 2015
    May 2015
    April 2015
    March 2015
    February 2015
    January 2015
    December 2014
    November 2014
    October 2014
    May 2014
    April 2014
    March 2014
    February 2014
    December 2013
    November 2013
    October 2013
    April 2013
    March 2013
    February 2013
    January 2013
    December 2012
    November 2012
    October 2012
    April 2011
    March 2011
    February 2011
    September 2010
    August 2010
    July 2010
    June 2010
    May 2010
    April 2010
    March 2010
    February 2010
    January 2010
    December 2009
    November 2009
    July 2009
    May 2009

Columbia Science Review
© COPYRIGHT 2022. ALL RIGHTS RESERVED.
Photos used under Creative Commons from driver Photographer, BrevisPhotography, digitalbob8, Rennett Stowe, Kristine Paulus
  • Home
  • About
    • Executive Board
    • Editorial Board
  • Blog
  • Events
    • 2022-2023
    • 2021-2022
    • 2020-2021
    • 2019-2020
    • 2018-2019
    • 2017-2018
    • 2016-2017
  • Publications
  • COVID-19 Public Hub
    • Interviews >
      • Biology of COVID-19
      • Public Health
      • Technology & Data
    • Frontline Stories >
      • Healthcare Workers
      • Global Health
      • Volunteer Efforts
    • Resources & Links >
      • FAQ's
      • Resource Hubs
      • Student Opportunities
      • Podcasts & Graphics
      • Mental Health Resources
      • Twitter Feeds
      • BLM Resources
    • Columbia Events >
      • Campus Events
      • CUMC COVID-19 Symposium
      • CSR Events
    • Our Team
  • Contact