Columbia Science Review
  • Home
  • About
    • Executive Board
    • Editorial Board
  • Blog
  • Events
    • 2022-2023
    • 2021-2022
    • 2020-2021
    • 2019-2020
    • 2018-2019
    • 2017-2018
    • 2016-2017
  • Publications
  • COVID-19 Public Hub
    • Interviews >
      • Biology of COVID-19
      • Public Health
      • Technology & Data
    • Frontline Stories >
      • Healthcare Workers
      • Global Health
      • Volunteer Efforts
    • Resources & Links >
      • FAQ's
      • Resource Hubs
      • Student Opportunities
      • Podcasts & Graphics
      • Mental Health Resources
      • Twitter Feeds
      • BLM Resources
    • Columbia Events >
      • Campus Events
      • CUMC COVID-19 Symposium
      • CSR Events
    • Our Team
  • Contact

Carbon Nanotube Sensors: The Rumblings of Technological Revolution

11/4/2014

0 Comments

 
Picture
By Ian MacArthur

Revolutions in one field of science often revolutionize other scientific fields. Breakthroughs in nuclear physics in the 1940’s later allowed organic chemistry to thrive with improved chemical detection methods and gave rise to biological imaging technologies. Recent developments in nanotechnology are now set to drastically enhance our understanding of biology and medicine.
The lab of Dr. Michael Strano, professor of chemical engineering at MIT, is studying the use of carbon nanotubes as biological sensors. The team has devised a nanotube-based sensor that can function in living creatures for more than a year. Specifically, the sensor can be used to monitor physiological levels of nitric oxide (NO), an important molecule involved in intercellular communication. The development of the first long term nano-sensor is likely to shed unique insight into the role that NO plays in cell signaling, immune system function, and cancer.

Carbon nanotubes are hollow, cylindrical structures with a diameter of one nanometer. They are naturally fluorescent, making them an ideal candidate for use as biological sensors. By wrapping the nanotubes in a molecule that is able to bind to the targeted chemical for detection, levels of the targeted chemical can be measured by how the fluorescence of the nanotube is affected by the degree of binding. In the case of nitric oxide, Dr. Strano’s lab discovered that wrapping a nanotube in DNA of a specific sequence would bind the nanotube to NO and alter fluorescence.

The long term sensor was created by embedding carbon nanotubes in a gel polymer found in algae and placing it under the skin of mice. There, the sensor was able to successfully function for 400 straight days, a time-frame that the researchers believe can be extended. Now that the sensor has been demonstrated to be operable over a long period of time, Dr. Strano and his team are beginning to study how this technology can be used to detect blood glucose levels in people who suffer from diabetes. The commonest current method for diabetics to read their blood glucose levels is to prick their fingers multiple times a day. Although electrochemical sensors have been developed as an alternative to finger pricking, the best ones available today are only able to last a week and carry the risk of infection due to having to break skin to insert them. A carbon nanotube sensor like the one being developed in the Strano lab would eliminate both of these problems.
​
But what are the broader implications of this early success in biological nanotechnology? Surely, this single advancement does not constitute a revolution in itself. However, as the sophistication of nanotechnology increases and its application to biological systems is enhanced, we may see a paradigm shift in the practice of medicine. The potential applications of nanotechnology in medicine are vast, from using nanosensors to detect pathogens in the bloodstream to using nano-sized machines to deliver drug payloads to specific cell receptors.
Although nanotechnology is still a nascent field, the current exponential growth in information technologies means it may grow and advance rapidly. These advances, coupled with new developments in bioinformatics and personalized medicine, may revolutionize medical practice in the coming decades. While we patiently wait for the full potential of these technologies to be realized, we may still marvel in the elegant simplicity of the carbon nanotube sensor.
0 Comments



Leave a Reply.

    Categories

    All
    Artificial Intelligence
    Halloween 2022

    Archives

    November 2022
    October 2022
    June 2022
    January 2022
    May 2021
    April 2021
    March 2021
    February 2021
    January 2021
    December 2020
    November 2020
    October 2020
    September 2020
    August 2020
    July 2020
    June 2020
    May 2020
    April 2020
    March 2020
    February 2020
    January 2020
    November 2019
    October 2019
    April 2019
    March 2019
    February 2019
    January 2019
    December 2018
    November 2018
    October 2018
    April 2018
    March 2018
    February 2018
    November 2017
    October 2017
    May 2017
    April 2017
    April 2016
    March 2016
    February 2016
    December 2015
    November 2015
    October 2015
    May 2015
    April 2015
    March 2015
    February 2015
    January 2015
    December 2014
    November 2014
    October 2014
    May 2014
    April 2014
    March 2014
    February 2014
    December 2013
    November 2013
    October 2013
    April 2013
    March 2013
    February 2013
    January 2013
    December 2012
    November 2012
    October 2012
    April 2011
    March 2011
    February 2011
    September 2010
    August 2010
    July 2010
    June 2010
    May 2010
    April 2010
    March 2010
    February 2010
    January 2010
    December 2009
    November 2009
    July 2009
    May 2009

Columbia Science Review
© COPYRIGHT 2022. ALL RIGHTS RESERVED.
Photos used under Creative Commons from driver Photographer, BrevisPhotography, digitalbob8, Rennett Stowe, Kristine Paulus
  • Home
  • About
    • Executive Board
    • Editorial Board
  • Blog
  • Events
    • 2022-2023
    • 2021-2022
    • 2020-2021
    • 2019-2020
    • 2018-2019
    • 2017-2018
    • 2016-2017
  • Publications
  • COVID-19 Public Hub
    • Interviews >
      • Biology of COVID-19
      • Public Health
      • Technology & Data
    • Frontline Stories >
      • Healthcare Workers
      • Global Health
      • Volunteer Efforts
    • Resources & Links >
      • FAQ's
      • Resource Hubs
      • Student Opportunities
      • Podcasts & Graphics
      • Mental Health Resources
      • Twitter Feeds
      • BLM Resources
    • Columbia Events >
      • Campus Events
      • CUMC COVID-19 Symposium
      • CSR Events
    • Our Team
  • Contact