Columbia Science Review
  • Home
  • About
    • Our Team
  • Blog
  • Events
    • 2022-2023
    • 2021-2022
    • 2020-2021
    • 2019-2020
    • 2018-2019
    • 2017-2018
    • 2016-2017
  • Publications
  • COVID-19 Public Hub
    • Interviews >
      • Biology of COVID-19
      • Public Health
      • Technology & Data
    • Frontline Stories >
      • Healthcare Workers
      • Global Health
      • Volunteer Efforts
    • Resources & Links >
      • FAQ's
      • Resource Hubs
      • Student Opportunities
      • Podcasts & Graphics
      • Mental Health Resources
      • Twitter Feeds
      • BLM Resources
    • Columbia Events >
      • Campus Events
      • CUMC COVID-19 Symposium
      • CSR Events
    • Our Team
  • Contact

Even Devils Are No Match For a Contagious Cancer

3/24/2013

0 Comments

 
Picture
The end of the Devil? Well, the Tasmanian devil that is. Sadly, that might well soon become a reality as a fatal contagious cancer is decimating the population of this marsupial. Found exclusively in Tasmania as their name suggests, devils, scientifically known as Sarcophilus harrisii, are small, primarily nocturnal scavengers with an unusually small amount of genetic diversity in their population.

According to a March 11th report in the Proceedings of the National Academy of Sciences, Cambridge scientists have estimated that over 70% of the Tasmanian devil population has already been killed off by this cancer that continues to rapidly spread across the central and eastern parts of the island. Since these marsupials seem to have no defensive mechanisms against this genetic invader, the fatality rate appears to be an alarming 100%.

So what exactly is a contagious cancer? Quite simply, the name tells the full story: a contagious cancer is in fact a type of cancer that can spread among different individuals due to the relatively stable genome of the cancerous cells when they are transmitted. However, this disease is exceeding rare, and only a few organisms (namely dogs, hamsters, and devils) have been documented to suffer from this affliction.

In dog populations however, their contagious malignancy, known as Canine Transmissible Venereal Tumor, is usually not fatal, even when no treatment is provided. Why then does Devil Facial Tumor Disease kill pretty much every individual it comes across? At first researchers thought that the answer was in the lack of genetic diversity present in the devil population. However, certain studies involving skin grafts have proven this to not be the case. Devils are usually able to successfully reject foreign cells.

Now, progress has been made with the understanding that the difference is one of cancer recognition. While the immune systems of dogs are able to identify the foreign cells and respond to them, the cancer that spreads among Tasmanian devils appears to turn off the production of proteins that typically accomplish identification. As such, the animals cannot recognize the invading cells as being different from their own and therefore produce no immune response. By turning off the major histocompatibility genes (MHC genes), the invading cells become indistinguishable from those of the animal itself.

Without a swift human response, the devils from down under don’t stand a chance. The new findings as to how the cancer is able to spread so effectively are, however, a promising step towards dealing with this disease. University of Cambridge geneticist Elizabeth Murchison is hopeful as she explains, “It’s really the first hope that there could be a vaccine or immune therapy.”
​
One possible solution would be to turn on the MHC genes in order to give the immune system a fighting chance against the cancer. Lab studies have already shown that an anti-fungal drug known as Trichostatin A might be able to activate the MHC genes by effecting gene activity. Other positive results have also been achieved with interferon gamma, a genetic chemical that seems to have the same effect. Such studies, however, are very introductory and a possible vaccine or inoculation against the contagious cancer is still long in the making. It remains to be seen whether the Tasmanian Devil populations will have that long to live.
0 Comments



Leave a Reply.

    Categories

    All
    Artificial Intelligence
    Halloween 2022
    Winter 2022-2023

    Archives

    April 2024
    January 2024
    February 2023
    November 2022
    October 2022
    June 2022
    January 2022
    May 2021
    April 2021
    March 2021
    February 2021
    January 2021
    December 2020
    November 2020
    October 2020
    September 2020
    August 2020
    July 2020
    June 2020
    May 2020
    April 2020
    March 2020
    February 2020
    January 2020
    November 2019
    October 2019
    April 2019
    March 2019
    February 2019
    January 2019
    December 2018
    November 2018
    October 2018
    April 2018
    March 2018
    February 2018
    November 2017
    October 2017
    May 2017
    April 2017
    April 2016
    March 2016
    February 2016
    December 2015
    November 2015
    October 2015
    May 2015
    April 2015
    March 2015
    February 2015
    January 2015
    December 2014
    November 2014
    October 2014
    May 2014
    April 2014
    March 2014
    February 2014
    December 2013
    November 2013
    October 2013
    April 2013
    March 2013
    February 2013
    January 2013
    December 2012
    November 2012
    October 2012
    April 2011
    March 2011
    February 2011
    September 2010
    August 2010
    July 2010
    June 2010
    May 2010
    April 2010
    March 2010
    February 2010
    January 2010
    December 2009
    November 2009
    July 2009
    May 2009

Columbia Science Review
© COPYRIGHT 2022. ALL RIGHTS RESERVED.
Photos from driver Photographer, BrevisPhotography, digitalbob8, Rennett Stowe, Kristine Paulus, Tony Webster, CodonAUG, Tony Webster, spurekar, europeanspaceagency, Christoph Scholz, verchmarco, rockindave1, robynmack96, Homedust, The Nutrition Insider
  • Home
  • About
    • Our Team
  • Blog
  • Events
    • 2022-2023
    • 2021-2022
    • 2020-2021
    • 2019-2020
    • 2018-2019
    • 2017-2018
    • 2016-2017
  • Publications
  • COVID-19 Public Hub
    • Interviews >
      • Biology of COVID-19
      • Public Health
      • Technology & Data
    • Frontline Stories >
      • Healthcare Workers
      • Global Health
      • Volunteer Efforts
    • Resources & Links >
      • FAQ's
      • Resource Hubs
      • Student Opportunities
      • Podcasts & Graphics
      • Mental Health Resources
      • Twitter Feeds
      • BLM Resources
    • Columbia Events >
      • Campus Events
      • CUMC COVID-19 Symposium
      • CSR Events
    • Our Team
  • Contact