Columbia Science Review
  • Home
  • About
    • Our Team
  • Blog
  • Events
    • 2022-2023
    • 2021-2022
    • 2020-2021
    • 2019-2020
    • 2018-2019
    • 2017-2018
    • 2016-2017
  • Publications
  • COVID-19 Public Hub
    • Interviews >
      • Biology of COVID-19
      • Public Health
      • Technology & Data
    • Frontline Stories >
      • Healthcare Workers
      • Global Health
      • Volunteer Efforts
    • Resources & Links >
      • FAQ's
      • Resource Hubs
      • Student Opportunities
      • Podcasts & Graphics
      • Mental Health Resources
      • Twitter Feeds
      • BLM Resources
    • Columbia Events >
      • Campus Events
      • CUMC COVID-19 Symposium
      • CSR Events
    • Our Team
  • Contact

Genetic Storage: Information for the Future

2/4/2013

0 Comments

 
Picture
​By Ian MacArthur

“So long as men can breathe, or eyes can see, so long lives this, and this gives life to thee.” With these words, Shakespeare concludes Sonnet 18, a defiant charge against the finality of a lover’s death by way of literary immortality. Though the Bard had placed hope in written English to perpetuate the memory of his love, its ultimate preservation may be made possible by biological molecules.
 
Scientists Nick Goldman and Ewan Birney of the European Bioinformatics Institute have devised a way to encode information into a DNA sequence. Among the first pieces of information to be translated into genetic code were all of Shakespeare’s 154 sonnets, Martin Luther King Jr.’s “I Have a Dream” speech, and Francis Crick and James Watson’s research paper describing the double helical structure of the DNA molecule. Voluminous in written form, the information when translated into DNA weighs less than a millionth of a gram.
 
DNA is an incredibly efficient way to store information. Requiring no energy to maintain, DNA can be preserved for thousands of years in cold, dark environments, giving it an incredible advantage over the energetically costly digital hard drives that occupy an immensely greater amount of space.  When asked how much space would be required to store the totality of humanity’s information in DNA, Dr. Goldman replied that it could be done in one and a half cubic meters. “So it would sort of go in the back of your station wagon, I guess,” he added.
 
The key to genetic storage lies in translating information into the four nucleotide bases – A, C, G, and T – that comprise a DNA sequence. In much the same way that computers use binary, a sequence of 0’s and 1’s, to store digital information, the scientists were able to code information into DNA bases. Every eight digits of binary code were translated into five letters of DNA, with the result being a systematic way of translating information into genetic code. With this method, English letters received their own five nucleotide sequence. The letter T, for example, appears as TAGAT.
 
After translating Shakespeare, King, Crick, and Watson into their new code and contracting an American corporation to synthesize the appropriate DNA, Goldman and Birney were able to sequence the code and successfully obtain the original information. The entirety of the DNA appeared as a miniscule speck suspended in a test tube.
 
Despite the clear advantages provided by DNA as a means to storing information, biological hard drives are not yet economically feasible to be put to use commercially. “At the moment, it’s so expensive that it’s only economically viable if you’re going to store it for 600 or more than 1,000 years,” stated Dr. Goldman. However, Dr. Birney noted that if the price of DNA sequencing were to experience a similar 100-fold drop in cost as it has over the last fifty years, DNA storage could be economical for preserving information over a fifty year period.
 
As a final reassurance of DNA’s merit, Dr. Goldman dispelled any ideas about the potential biological danger of storing information genetically. “The code we use to store information in DNA is completely different from the codes that living organisms on Earth use in their DNA,” he said. “So it’s no more dangerous to have the information stored in DNA that way than a piece of plastic’s dangerous because you can make a CD out of it.”


0 Comments



Leave a Reply.

    Categories

    All
    Artificial Intelligence
    Halloween 2022
    Winter 2022-2023

    Archives

    April 2024
    January 2024
    February 2023
    November 2022
    October 2022
    June 2022
    January 2022
    May 2021
    April 2021
    March 2021
    February 2021
    January 2021
    December 2020
    November 2020
    October 2020
    September 2020
    August 2020
    July 2020
    June 2020
    May 2020
    April 2020
    March 2020
    February 2020
    January 2020
    November 2019
    October 2019
    April 2019
    March 2019
    February 2019
    January 2019
    December 2018
    November 2018
    October 2018
    April 2018
    March 2018
    February 2018
    November 2017
    October 2017
    May 2017
    April 2017
    April 2016
    March 2016
    February 2016
    December 2015
    November 2015
    October 2015
    May 2015
    April 2015
    March 2015
    February 2015
    January 2015
    December 2014
    November 2014
    October 2014
    May 2014
    April 2014
    March 2014
    February 2014
    December 2013
    November 2013
    October 2013
    April 2013
    March 2013
    February 2013
    January 2013
    December 2012
    November 2012
    October 2012
    April 2011
    March 2011
    February 2011
    September 2010
    August 2010
    July 2010
    June 2010
    May 2010
    April 2010
    March 2010
    February 2010
    January 2010
    December 2009
    November 2009
    July 2009
    May 2009

Columbia Science Review
© COPYRIGHT 2022. ALL RIGHTS RESERVED.
Photos from driver Photographer, BrevisPhotography, digitalbob8, Rennett Stowe, Kristine Paulus, Tony Webster, CodonAUG, Tony Webster, spurekar, europeanspaceagency, Christoph Scholz, verchmarco, rockindave1, robynmack96, Homedust, The Nutrition Insider
  • Home
  • About
    • Our Team
  • Blog
  • Events
    • 2022-2023
    • 2021-2022
    • 2020-2021
    • 2019-2020
    • 2018-2019
    • 2017-2018
    • 2016-2017
  • Publications
  • COVID-19 Public Hub
    • Interviews >
      • Biology of COVID-19
      • Public Health
      • Technology & Data
    • Frontline Stories >
      • Healthcare Workers
      • Global Health
      • Volunteer Efforts
    • Resources & Links >
      • FAQ's
      • Resource Hubs
      • Student Opportunities
      • Podcasts & Graphics
      • Mental Health Resources
      • Twitter Feeds
      • BLM Resources
    • Columbia Events >
      • Campus Events
      • CUMC COVID-19 Symposium
      • CSR Events
    • Our Team
  • Contact