Columbia Science Review
  • Home
  • About
    • Executive Board
    • Editorial Board
  • Blog
  • Events
    • 2022-2023
    • 2021-2022
    • 2020-2021
    • 2019-2020
    • 2018-2019
    • 2017-2018
    • 2016-2017
  • Publications
  • COVID-19 Public Hub
    • Interviews >
      • Biology of COVID-19
      • Public Health
      • Technology & Data
    • Frontline Stories >
      • Healthcare Workers
      • Global Health
      • Volunteer Efforts
    • Resources & Links >
      • FAQ's
      • Resource Hubs
      • Student Opportunities
      • Podcasts & Graphics
      • Mental Health Resources
      • Twitter Feeds
      • BLM Resources
    • Columbia Events >
      • Campus Events
      • CUMC COVID-19 Symposium
      • CSR Events
    • Our Team
  • Contact

How Chemistry Becomes Biology

4/21/2015

0 Comments

 
Picture
By Ian Cohn
Edited By Timshawn Luh

This past week, a team of scientists from Harvard University, Leiden University, and Kobe University announced what has been since deemed a very exciting discovery—for the first time, the presence of complex organic molecules had been observed in an infant star system. Detected through the use of a complex telescope and detector known as the Atacama Large Millimeter/submillimeter Array, scientists were able to detect the presence of acetonitrile (CH3CN) in a protoplanetary disk surrounding a one-million-year-old star 455 light-years away from our solar system.

This provides yet another clue that our Earth, the only planet currently known to harbor life, may not be as special as we’d like to think. Indeed, while this is the first time a complex organic (carbon-containing) molecule has been observed in a protoplanetary interstellar environment, the presence of complex organic molecules in space is nothing new. Back in 2011, researchers at the University of Hong Kong showed that stars at different phases in their life cycles could produce complex organic compounds (much more complex than acetonitrile) and eject them into space. Other examples of interstellar organic materials exist. Clouds of ethanol, large carbon based molecules called fullerines, and complex organic molecules like pyrene have all been shown to exist in space. This new discovery, then, just adds to the already mountainous pile of evidence that organic chemistry, the basis for life, is not unique to Earth. The easy takeaways: we aren’t anything special, and life may not be some kind of sacred anomaly.

Nonetheless, the question remains—if the chemistry exists, does the biology exist? Or even, how do we get from the chemistry to the biology? In other words, it’s still extremely unclear how the natural world progressed from the isolated reactions of organic chemistry to the complex, biotic (life-containing) systems which characterize biology. Abiogenesis, the natural process of life arising from nonliving matter, remains one of the least understood and most thought provoking questions in modern science. Several theories exist for how life came to exist. One of the more well-known is commonly referred to as the “primordial soup hypothesis,” which posits that the environment of the early Earth had an atmosphere which encouraged the natural synthesis of various organic molecules, and that these reactions eventually increased in complexity until life arose. While this seems like somewhat of a hand-wavy explanation, it does have an important history to it. In 1952, Stanley Miller and Harold Urey took a mixture of gases which would have been present in the atmosphere of the early Earth, simulated other physical and chemical conditions of this environment, and showed that these gases in the “primitive atmosphere” naturally led to the synthesis of over twenty different amino acids, the basic building block of proteins.

Several other models beyond that which was proposed by the Miller-Urey experiment exist, with some building upon the experiment’s principles and others defying them. For instance, the panspermia hypothesis posits that meteoroids and asteroids distributed microscopic life through earth, though this just defers the burden of abiogenesis to another region of space, rather than offer a satisfactory answer to how life first arose. Other theories, classified as “metabolism first” hypotheses, suggest that the chemical reactions underlying metabolism developed first and that life followed, perhaps through the natural formation of protocells (primitive spheres of lipids) to "section off” these metabolic reactions. Yet another set of theories suggest that life began at deep sea vents, known as hydrothermal vents, where hydrogen-rich fluids erupt from the bottom of the ocean and create an environment that increases the concentration of organic molecules, perhaps leading to life.
​
Just as the origin of life still remains an open question, so too does the question of whether Earth is the only place in the Universe to truly harbor life. Indeed, mounting evidence suggests that the chemical reactions which underlie biology may not be unique to Earth, but the presence of these reactions in biological systems in places other than Earth remains yet to be discovered.
0 Comments



Leave a Reply.

    Categories

    All
    Artificial Intelligence
    Halloween 2022

    Archives

    November 2022
    October 2022
    June 2022
    January 2022
    May 2021
    April 2021
    March 2021
    February 2021
    January 2021
    December 2020
    November 2020
    October 2020
    September 2020
    August 2020
    July 2020
    June 2020
    May 2020
    April 2020
    March 2020
    February 2020
    January 2020
    November 2019
    October 2019
    April 2019
    March 2019
    February 2019
    January 2019
    December 2018
    November 2018
    October 2018
    April 2018
    March 2018
    February 2018
    November 2017
    October 2017
    May 2017
    April 2017
    April 2016
    March 2016
    February 2016
    December 2015
    November 2015
    October 2015
    May 2015
    April 2015
    March 2015
    February 2015
    January 2015
    December 2014
    November 2014
    October 2014
    May 2014
    April 2014
    March 2014
    February 2014
    December 2013
    November 2013
    October 2013
    April 2013
    March 2013
    February 2013
    January 2013
    December 2012
    November 2012
    October 2012
    April 2011
    March 2011
    February 2011
    September 2010
    August 2010
    July 2010
    June 2010
    May 2010
    April 2010
    March 2010
    February 2010
    January 2010
    December 2009
    November 2009
    July 2009
    May 2009

Columbia Science Review
© COPYRIGHT 2022. ALL RIGHTS RESERVED.
Photos used under Creative Commons from driver Photographer, BrevisPhotography, digitalbob8, Rennett Stowe, Kristine Paulus
  • Home
  • About
    • Executive Board
    • Editorial Board
  • Blog
  • Events
    • 2022-2023
    • 2021-2022
    • 2020-2021
    • 2019-2020
    • 2018-2019
    • 2017-2018
    • 2016-2017
  • Publications
  • COVID-19 Public Hub
    • Interviews >
      • Biology of COVID-19
      • Public Health
      • Technology & Data
    • Frontline Stories >
      • Healthcare Workers
      • Global Health
      • Volunteer Efforts
    • Resources & Links >
      • FAQ's
      • Resource Hubs
      • Student Opportunities
      • Podcasts & Graphics
      • Mental Health Resources
      • Twitter Feeds
      • BLM Resources
    • Columbia Events >
      • Campus Events
      • CUMC COVID-19 Symposium
      • CSR Events
    • Our Team
  • Contact