Columbia Science Review
  • Home
  • About
    • Executive Board
    • Editorial Board
  • Blog
  • Events
    • 2022-2023
    • 2021-2022
    • 2020-2021
    • 2019-2020
    • 2018-2019
    • 2017-2018
    • 2016-2017
  • Publications
  • COVID-19 Public Hub
    • Interviews >
      • Biology of COVID-19
      • Public Health
      • Technology & Data
    • Frontline Stories >
      • Healthcare Workers
      • Global Health
      • Volunteer Efforts
    • Resources & Links >
      • FAQ's
      • Resource Hubs
      • Student Opportunities
      • Podcasts & Graphics
      • Mental Health Resources
      • Twitter Feeds
      • BLM Resources
    • Columbia Events >
      • Campus Events
      • CUMC COVID-19 Symposium
      • CSR Events
    • Our Team
  • Contact

Rethinking Prions – From Mad Cow Culprits to Integral Memory Keepers

3/1/2014

0 Comments

 
Picture
By Alexander Bernstein

Especially following the recent mid 2000’s outbreak of Mad Cow Disease in Britain that saw nearly 200 thousand cattle and more than a hundred people infected, prions, the proteins associated with this disease, have a primarily served a boogeyman role in the media.

Yet, as per a recent article published in Public Library of Science (PLOS) Biology, it appears that these proteins may have been misunderstood. Although some prions are in fact responsible for stimulating protein misfolding and thereby leading to destruction of appropriate cellular function in what is typically an irreversible and fatal process, the word done by Stowers Institute for Medical Research demonstrates that it is wrong to brand all prions under this same caustic banner.

In his “The Proteins behind the Persistence of Memory”, Richard Robinson notes “At its most fundamental level, a memory is an increase in synaptic strength that persists over time.” With that in mind, he continues to point out in order to establish this synaptic effect specific protein function is required. From what is currently understood, those proteins are called Cytoplasmic Polyadenylation Element Binding (CPEB) proteins. Remarkably, these apparently fundamental proteins are, in their structure, very prion-like in that, as Robinson continues “Their conversion from monomers to oligomers, via stacking of their prion domains, is essential to the long-term maintenance of synaptic memory.” Indeed, it has been demonstrated that these proteins have no part in disease causing processes, as some of their cousins seem to do, but rather play a role in essential cellular function.

Chief investigator of the PLOS Biology published research, Kausik Si points out that while much of the machinery in cells is altered and destroyed over time, these prion like proteins serve the role of stabilizing memories likely since prion folding is a self contained process and does not require external stimuli.

Conducting their research on fruit flies, Si and his team demonstrated that the prion-like Orb2 protein is required for long-term memory since flies with a mutated version of this protein were able to learn new behaviors, but, unlike their counterparts with a normal version of the protein, were unable to practice these learned behaviors after a short period of time. As Si notes in the PLOS Biology article, “Beyond a day, the memories become unstable. By three days, the memory has completely disappeared.”

Demonstrating the function of these proteins is just the beginning. Si and his colleagues are already planning to take their work further by examining how this prion function is regulated. Such a concept is intriguing because it is still unknown how prions are regulated. However, our fundamental understanding of memories and the fact that not all are long term seem to suggest that some regulatory processes must exist, and they determine when protein folding occurs.
​
Thus far, Si has determined that Orb2 protein exists in two forms in the fruit fly – Orb2A and Orb2B. Orb2A is found in only certain specific neurons and degrades very quickly. Si explains that “When Orb2A binds to the more abundant form, it triggers conversion to the prion state, acting as a seed for the conversion.” This seed then is self-sustaining, and the team has demonstrated is partly regulated by a protein known as TOB, the binding of which stabilizes Orb2A and increases the prion nature. Since similar proteins have been found in both mice and humans, the study of their regulation and function is of utmost importance.

0 Comments



Leave a Reply.

    Categories

    All
    Artificial Intelligence
    Halloween 2022

    Archives

    November 2022
    October 2022
    June 2022
    January 2022
    May 2021
    April 2021
    March 2021
    February 2021
    January 2021
    December 2020
    November 2020
    October 2020
    September 2020
    August 2020
    July 2020
    June 2020
    May 2020
    April 2020
    March 2020
    February 2020
    January 2020
    November 2019
    October 2019
    April 2019
    March 2019
    February 2019
    January 2019
    December 2018
    November 2018
    October 2018
    April 2018
    March 2018
    February 2018
    November 2017
    October 2017
    May 2017
    April 2017
    April 2016
    March 2016
    February 2016
    December 2015
    November 2015
    October 2015
    May 2015
    April 2015
    March 2015
    February 2015
    January 2015
    December 2014
    November 2014
    October 2014
    May 2014
    April 2014
    March 2014
    February 2014
    December 2013
    November 2013
    October 2013
    April 2013
    March 2013
    February 2013
    January 2013
    December 2012
    November 2012
    October 2012
    April 2011
    March 2011
    February 2011
    September 2010
    August 2010
    July 2010
    June 2010
    May 2010
    April 2010
    March 2010
    February 2010
    January 2010
    December 2009
    November 2009
    July 2009
    May 2009

Columbia Science Review
© COPYRIGHT 2022. ALL RIGHTS RESERVED.
Photos used under Creative Commons from driver Photographer, BrevisPhotography, digitalbob8, Rennett Stowe, Kristine Paulus
  • Home
  • About
    • Executive Board
    • Editorial Board
  • Blog
  • Events
    • 2022-2023
    • 2021-2022
    • 2020-2021
    • 2019-2020
    • 2018-2019
    • 2017-2018
    • 2016-2017
  • Publications
  • COVID-19 Public Hub
    • Interviews >
      • Biology of COVID-19
      • Public Health
      • Technology & Data
    • Frontline Stories >
      • Healthcare Workers
      • Global Health
      • Volunteer Efforts
    • Resources & Links >
      • FAQ's
      • Resource Hubs
      • Student Opportunities
      • Podcasts & Graphics
      • Mental Health Resources
      • Twitter Feeds
      • BLM Resources
    • Columbia Events >
      • Campus Events
      • CUMC COVID-19 Symposium
      • CSR Events
    • Our Team
  • Contact