Columbia Science Review
  • Home
  • About
    • Executive Board
    • Editorial Board
  • Blog
  • Events
    • 2022-2023
    • 2021-2022
    • 2020-2021
    • 2019-2020
    • 2018-2019
    • 2017-2018
    • 2016-2017
  • Publications
  • COVID-19 Public Hub
    • Interviews >
      • Biology of COVID-19
      • Public Health
      • Technology & Data
    • Frontline Stories >
      • Healthcare Workers
      • Global Health
      • Volunteer Efforts
    • Resources & Links >
      • FAQ's
      • Resource Hubs
      • Student Opportunities
      • Podcasts & Graphics
      • Mental Health Resources
      • Twitter Feeds
      • BLM Resources
    • Columbia Events >
      • Campus Events
      • CUMC COVID-19 Symposium
      • CSR Events
    • Our Team
  • Contact

White-Nose Syndrome Proves Resilient as Little Brown Bats Face Further Declines

11/2/2013

0 Comments

 
Picture
By Alexandra DeCandia

The situation may be worse than we anticipated for the little brown bat (Myotis lucifugus). In a harrowing new study published by University of Illinois researchers earlier this week, it appears that the fungus Pseudogymnoascus (Geomyces) destructans (the cause of White-Nose Syndrome or WNS in bats) is even more resilient than previously thought. Able to colonize any complex carbon source found within the confines of a cave environment, the fungus can persist on a plethora of organisms and at a variety of pH levels. For the little brown bat, this implies that any attempt at the fungus’ eradication from known hibernacula proves futile. The fungus will merely lay in wait on another organism until its preferred host reappears en masse each fall.

The North American strain of Pseudogymnoascus destructans(Gd) examined in this study first appeared in 2006. Infecting only a few hibernacula in upstate New York, the fungus has since spread to over two-dozen states and migrated as far northward as Canada. Highly transmissible, highly persistent, and incredibly lethal, Gd has already claimed the lives of over 5.7 million North American bats with no perceivable end to its destructive reign yet in sight.

Gd infects bats while they hibernate, passing from one individual to the next in the cramped conditions of a M. lucifugus colony. The fungus grows on the cold cutaneous tissues of their muzzles and wings and specifically degrades their epidermal keratin. Resultant lesions form and increase the bat’s vulnerability to other pathogens and parasites lurking within the caves.
Of even greater concern, though, is the fungus’ effect on the patterning of torpor and consciousness during hibernation. As an order, chiropterans possess incredibly efficient metabolisms. Flying or even heating their bodies above ambient temperature can deplete their energy stores to the point of emaciation within days. Therefore, remaining in a state of torpor (i.e. decreased body temperature, lowered metabolic rate, etc.) proves crucial when ambient temperature and food availability decrease in winter. Bats infected with Gd cannot remain in hibernation undisturbed, due either to fungal itch or rapid dehydration. With increasing frequency, they arouse until ultimately perishing from starvation.

Intrinsic value of the species aside, the loss of so many little brown bats at the hands of Gd-induced starvation poses a serious economic risk to North Americans. Through insect predation, consequential reduction in pesticide utilization, and natural agricultural pollination, bats provide ecosystem services worth an estimated $3.7 to $53 billion USD per annum (Boyles et al., 2011). Should WNS eradicate certain chiropterans from the continent as it seems poised to do (at least as far as M. lucifugus is concerned), thousands of metric tons of insects will pour into our fields and lead to a cascade of negative ecological, economic, and human health implications.
​
Combatting Gd and WNS has proven difficult thus far, to say the least. Indeed, studies have concluded that even if little brown bats manage to evolve means of surviving infection (as their European cousins have done), their populations will still decrease to fewer than 1% of their initial numbers within 20 years (Frick et al., 2010). Such estimates combined with the newfound resilience of Gd paint a grim depiction of the future for M. lucifugus, but they by no means necessitate surrender. Scientists continue to seek physical, chemical, and biological means of impeding the fungus, and some have even developed artificial hibernacula devoid of spores for bats to roost in unaffected. While neither management strategy has yet proven to drastically mitigate the spread of WNS, they represent steps in the right direction towards preserving an often overlooked but economically and intrinsically significant species, North America’s little brown bat.
0 Comments



Leave a Reply.

    Categories

    All
    Artificial Intelligence
    Halloween 2022

    Archives

    November 2022
    October 2022
    June 2022
    January 2022
    May 2021
    April 2021
    March 2021
    February 2021
    January 2021
    December 2020
    November 2020
    October 2020
    September 2020
    August 2020
    July 2020
    June 2020
    May 2020
    April 2020
    March 2020
    February 2020
    January 2020
    November 2019
    October 2019
    April 2019
    March 2019
    February 2019
    January 2019
    December 2018
    November 2018
    October 2018
    April 2018
    March 2018
    February 2018
    November 2017
    October 2017
    May 2017
    April 2017
    April 2016
    March 2016
    February 2016
    December 2015
    November 2015
    October 2015
    May 2015
    April 2015
    March 2015
    February 2015
    January 2015
    December 2014
    November 2014
    October 2014
    May 2014
    April 2014
    March 2014
    February 2014
    December 2013
    November 2013
    October 2013
    April 2013
    March 2013
    February 2013
    January 2013
    December 2012
    November 2012
    October 2012
    April 2011
    March 2011
    February 2011
    September 2010
    August 2010
    July 2010
    June 2010
    May 2010
    April 2010
    March 2010
    February 2010
    January 2010
    December 2009
    November 2009
    July 2009
    May 2009

Columbia Science Review
© COPYRIGHT 2022. ALL RIGHTS RESERVED.
Photos used under Creative Commons from driver Photographer, BrevisPhotography, digitalbob8, Rennett Stowe, Kristine Paulus
  • Home
  • About
    • Executive Board
    • Editorial Board
  • Blog
  • Events
    • 2022-2023
    • 2021-2022
    • 2020-2021
    • 2019-2020
    • 2018-2019
    • 2017-2018
    • 2016-2017
  • Publications
  • COVID-19 Public Hub
    • Interviews >
      • Biology of COVID-19
      • Public Health
      • Technology & Data
    • Frontline Stories >
      • Healthcare Workers
      • Global Health
      • Volunteer Efforts
    • Resources & Links >
      • FAQ's
      • Resource Hubs
      • Student Opportunities
      • Podcasts & Graphics
      • Mental Health Resources
      • Twitter Feeds
      • BLM Resources
    • Columbia Events >
      • Campus Events
      • CUMC COVID-19 Symposium
      • CSR Events
    • Our Team
  • Contact